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Abstract. It is commonly assumed that electrons evolve adiabatically in quantum transport 
devices, and so remain in the same transverse quantum state throughout the system. This 
model simplifies the analysis of such devices and the model correctly predicts that the 
conductance of a system containing a number of constrictions is quantised with a value equal 
to the conductance of the narrowest constriction. In this paper the validity of the adiabatic 
model for the evolution of the electronic wavefunctions is investigated via an analysis of the 
behaviour of a wavefunction in a one-dimensional potential well whose width increases with 
time. It is found that the evolution becomes strongly non-adiabatic no matter how small the 
rate of increase in the width of the well. This invalidates the previous interpretation of the 
origin of a quantised conductance in devices containing several constrictions. However, it is 
shown that the quantisationof the conductance in these devicescan be explained by replacing 
the requirement of adiabaticity in the evolution of the transverse electronic wavefunctions 
with the requirement of reversibility. 

1. Introduction 

There has recently been a considerable increase in interest in the subject of quantum 
transport following the successful fabrication of devices that show quantised con- 
ductances attributable to quantum transport (van Wees et a1 1988, Wharam et a1 1988b). 
Theoretical studies of the origin of the quantised conductance in devices that contain a 
single narrow contriction have been presented by several authors (Landauer 1988, 
Widom and Tao 1988, Szafer and Stone 1989). Experiments on systems that contain 
more than one constriction show that the conductance of these devices is also quantised 
and is equal to the conductance of the narrowest constriction (Wharam el a1 1988a). 
This result is easily explained by assuming that the electronic wavefunctions evolve 
adiabatically in the device so that the electrons remain in the same transverse quantum 
state throughout the system (Beenakker and van Houten 1988). In this case any electron 
that can propagate through the narrowest constriction can pass through every other 
constriction because the energy in the transverse direction in these constrictions is 
smaller than it was in the narrowest constriction and so the longitudinal energy of the 
electron remains positive throughout the device. Landauer has used the assumption of 
adiabatic evolution of the wavefunctions to analyse the conductance of devices that 
contain a single contriction (Landauer 1988). In this work Landauer was primarily 
concerned with the effect of self-consistency on the conductance of the device and the 
assumption of adiabatic evolution of the wavefunctions was used to simplify the analysis. 
Szafer and Stone (1989) have calculated the conductances of a number of devices that 
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contain narrow constrictions. They have shown that there is no significant variation 
between the conductance of a device in which the change in the width of the channel is 
abrupt and the conductance of a device in which the width of the channel changes 
gradually to give a greater degree of adiabaticity in the evolution of the electronic 
wavefunctions. Therefore the conductance of devices that contain single constrictions 
appears to be relatively insensitive to the degree of adiabaticity in the evolution of the 
electronic wavefunctions. This suggests that Landauer’s conclusions concerning the 
conductance of devices that contain single constrictions can be applied to any such 
device independently of the degree of adiabaticity in the evolution of the electronic 
wavefunctions. The reason for the relative insensitivity of the quantisation of the con- 
ductance to the degree of adiabaticity in the evolution of the electronic wavefunctions 
in these devices is discussed briefly in § 3. 

An investigation of the validity of the adiabatic model for the evolution of the 
electronic wavefunctions in quantum transport devices is presented in the following 
section. The evolution of a wavefunction in a one-dimensional potential well whose 
width varies with time is analysed and it is found that the evolution of the wavefunction 
becomes strongly non-adiabatic no matter how small the rate of increase in the width of 
the well. This invalidates the simple model for the quantisation of the conductance in 
devices that contain several constrictions because the electrons will not remain in the 
same transverse quantum states throughout the system. However, the quantisation of 
the conductance in these devices requires the less stringent condition of reversibility in 
the evolution of the transverse wavefunctions to ensure that the electronic wavefunction 
returns to the same transverse quantum state in each of the constrictions. In § 3 it is 
shown that the condition for reversibility in the evolution of the transverse electronic 
wavefunctions is not strongly violated, so the conductance of devices that contain several 
narrow constrictions will be quantised. 

The systems investigated experimentally have a two-dimensional geometry but the 
evolution of the wavefunction in the transverse direction can be approximately analysed 
using the one-dimensional model adopted in this paper by computing the width of the 
potential well at time t from the geometry of the system and the longitudinal velocity of 
the electron. The complications that arise from the two-dimensional geometry are briefly 
discussed in § 3. 

2. Evolution of a wavefunction in a one-dimensional time-dependent potential well 

The wavefunction of an electron in a one-dimensional potential well whose width varies 
with time can be written as a superposition of the instantaneous eigenstates of the system. 
In this paper it will be assumed that the origin of coordinates lies at the centre of the 
potential well and that the potential well remains symmetric about this point. In this case 
the symmetry of the initial wavefunction will be conserved during the expansion of the 
well. For convenience it will be assumed that the initial electronic state is symmetric 
so that only the symmetric eigenstates have to be included in the expansion of the 
wavefunction. The wavefunction at time t can be written as 

where w(r) is the width of the potential well at time f. 
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Substituting this expression into the time-dependent Schrodinger equation gives 

where m is the electronic mass. 
The equation of motion for the coefficient c, is 

X (2p + l)nx+(t) /"""' cos((2n + l)nx) sin( (2p + 1)nx >x dx. 
(3) W3 -w(r)/z 4 0  

The second term in (2) cancels with the diagonal component of the third term when 
deriving (3). 

Two particular forms for w(t)  will be considered, a linear variation with time and a 
quadratic variation with time. The evolution of the wavefunction in a widening potential 
well rather than a narrowing well will be considered for reasons that become apparent 
later. 

In the case of a linear variation of the width of the well with time the equations of 
motion for the coefficients c,~ can be simplified by using the following expression for the 
wavefunction: 

where a is the initial width of the potential well and U is the rate of increase in the width 
of the well. 

Substituting (4) into the Schrodinger equation gives the equations of motion for the 
coefficients c, as 

i 2ih(p2 + p  - n2 - n)n2 
mu(a + ut )  L,(t> = - c C p ( 0  

P i . ,  

(a + ur)/2 (2n + 1)nx (2p + 1)nx 
x 1 cos( a + ut 1 sin( a + ut )xdx .  

- ( a  + ur ) /2  

This set of coupled equations can be considerably simplified by working in the Born 
approximation and by assuming that the wavefunction is initially an instantaneous 
eigenstate of the system-here it will be assumed that it is the lowest-energy eigenstate. 
Since only first-order terms are retained in the Born approximation the value of the 
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coefficient co remains equal to 1 and, to first order, the equations of motion for the 
coefficients c, can be written as 
L,(t) = - [ n u / ( a  + u t ) ] ~ ( n )  exp[ -2ih(n2 + n)n*/mu(a + ut)] n # O  (6) 
where 

M ( n )  = 1'" cosr(2n + 1)nx] sin(nx)x dx 
-112 

which gives 
exp[ -2ih(n2 + n)n2/mu(a + ut')] 

(a + u t ' )  
d t '  n # 0. c,(t) = - n u M ( n )  

(7) 

The variation in the magnitudes of the coefficients depends on the value of 
2h(n2 + n)n2/mu(a + ut). For times tsuch that 2h(nZ + n)n2/mu(a + ut)  S n the phase 
factor in the integral is rapidly varying and the amplitude of c, remains small. When 
2h(n2 + n)n2/mu(a + ut) Q n the phase factor is effectively independent of time and 
the value of c,(t) is given by 

c,(t> = - n M ( n )  h{(a + ut)/[2n2h(nz + n)/mu]}. (9) 
The values of all the coefficients c, are unbounded no matter how small the rate of 

increase in the width of the channel with time. The non-adiabicity arises because the 
difference between the energies of the first and any higher quantum state decreases as 
the potential well widens, at some point the perturbation due to the increase in the width 
of the well is large compared with the energy difference between the states and the 
condition for the adiabatic evolution of the wavefunction is violated. The neglect of 
second- and higher-order terms in (6) is responsible for the continuous increase in the 
magnitudes of the coefficients and including these terms in the equations of motion will 
ensure that the wavefunction remains normalised. However, the higher-order terms in 
the equations of motion will only affect the evolution of the wavefunction when a 
significant weight of the wavefunction is in higher quantum states, so adding these terms 
to the equations of motion will not change the conclusion concerning the non-adiabicity 
of the evolution of the wavefunction. 

The evolution of the electronic wavefunction in a one-dimensional potential well 
whose width increases quadratically with time will now be investigated. The width of 
the well at time twill be taken to be a + b?. In this case the equations of motion for the 
coefficients c, can be simplified by choosing the following expression for the wavefunc- 
tion: 

The equations of motion for the coefficients c, are then given by 

(2n + 1)nx (2p + 1)nx (a  + bt2)!2 

d ' , ( t )  = 
c,(t)2(2p + l)nbt 1 

cos( a + bt2 ) sin( a + bt2 )x dx 
p # '1 a + bt2 - ( a  + br2 ) /2  
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Applying the Born approximation and assuming the initial wavefunction is the 
lowest-energy eigenstate of the instantaneous Hamiltonian gives the coefficients at time 
t as 

1 
(ab) 

+ -tan-' [(f) 1'2~yj dt f  n # 0. 

The amplitudes of the coefficients remain small for times t such that the in- 
equality h(n2 + n)n2t/ma(a + bt2) + n holds, but for large values of t when 
h(n2 + n)n't/ma(a + bt2) JC the value of each coefficient increases continuously and 
is 

1 n#O. (13) c, (t) = -2nM(n)exp (- ih(n2+n)n3l ln(  
a+bt2 

2ma(ab) U2 [a+h2(n2  +n)2n4/bm2a2] 

The evolution of the electronic wavefunction is again highly non-adiabatic although 
this is less surprising than in the previous example because in this example the magnitude 
of the perturbation increases with time since the rate of change of the width of the well 
increases with time. The examples considered in this section show that the transverse 
wavefunction of an electron in a quantum transport device cannot evolve adiabatically 
in a continuously widening channel no matter how slowly the width of the channel 
increases. 

2. Non-adiabaticity and quantisation of the conductance 

The effects of non-adiabaticity in the evolution of the transverse electronic 
wavefunctions in quantum transport devices will be discussed in this section. The effect 
of non-adiabaticity on the quantisation of the conductance in a device that contains a 
single constriction will be considered first. It will be assumed that only electrons in the 
lowest transverse quantum state can pass through the constriction. An electron in the 
lowest transverse quantum state approaching the constriction from the wide region of 
the device will be strongly scattered to higher quantum states as soon as the channel 
begins to narrow. Providing that a particular higher quantum state is occupied the 
scattering from the lowest quantum state to this higher state will be exactly compensated 
by scattering in the opposite direction so the occupancy of these quantum states is not 
changed. It is only the scattering from the lowest transverse quantum state to unoccupied 
states that reduces the occupancy of the lowest state and destroys the quantisation of the 
conductance. The magnitude of the scattering from the lowest state to the unoccupied 
states is very small due to the large difference between the transverse energies of the 
states. Although the evolution of the transverse electronic wavefunction is strongly non- 
adiabatic in the widest regions of the device the non-adiabaticity will not destroy the 
quantisation of the conductance providing that in these regions a large number of 
transverse quantum states are occupied in the range of energies of the current-carrying 
states. Closer to the constriction the width of the channel is greatly reduced and the 
spacing between the energies of the transverse quantum states increases. Consequently 
the evolution of the wavefunctions becomes more adiabatic towards the constriction and 
the electrons will pass adiabatically through the narrowest regions of the device as long 
as there are no abrupt changes in the width of the channel. 
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Non-adiabatic evolution of the wavefunctions has a significant effect on the quanti- 
sation of the conductance in a device that contains a number of constrictions. Scattering 
from an occupied quantum state to a second quantum state cannot be compensated by 
scattering in the opposite direction if the second quantum state is unoccupied. In the 
region between the constrictions the majority of the transverse quantum states are 
unoccupied in the range of energies of the current-carrying states. Hence, the scattering 
from the lowest quantum state to higher quantum states in this region will not be 
compensated by scattering in the opposite direction. There will always be a significant 
scattering to higher transverse quantum states in a device in which the width of channel 
increases continuously and this might be expected to destroy the quantisation of the 
conductance in the device. However, this analysis has ignored the evolution of the 
wavefunction as the electron approaches the second constriction. Consider a device in 
which the two constrictions are of equal width. If only electrons in the lowest transverse 
quantum state can pass through the constrictions an electron will pass through the second 
constriction as long as its wavefunction evolves to the lowest transverse quantum state 
at the narrowest point in the second constriction. The electron must be in the lowest 
transverse quantum state to pass through the first constriction but it does not have to be 
in the lowest transverse quantum state at all points in between the constrictions in 
order to pass through the second constriction. The electron passing through the second 
constriction corresponds to the wavefunction in a one-dimensional potential well return- 
ing to its initial state when the width of the well has been reduced back to its initial value. 
One way of ensuring that an electron evolves to the lowest eigenstate of the instantaneous 
Hamiltonian in a one-dimensional potential well whose width decreases with time is to 
choose the initial state to be the time-reversed form of the wavefunctions calculated in 
the previous section. These wavefunctions evolved from the lowest-energy eigenstate 
of the instantaneous Hamiltonian as the width of the potential well increased and so 
the time-reversed wavefunctions will evolve to the lowest-energy eigenstate of the 
instantaneous Hamiltonian as the width of the potential well decreases to its initial value. 
If the width of the potential well is a + u(2t’ - t )  or a + b[(2t’ - t )2]  for the period 
t‘ < t < 2t’ ,  depending on whether the size of the well was increased linearly or quad- 
ratically, and the wavefunction at time t’ is chosen to be I)*(?’), where q(t’) is the 
wavefunction that the lowest eigenstate of the initial Hamiltonian evolved to after time 
t’, the wavefunction at time 2t’ will be the lowest eigenstate of the instantaneous 
Hamiltonian. Therefore, the extent to which the electronic wavefunction evolves back 
to the lowest eigenstate in the one-dimensional system studied in the previous section is 
determined by the overlap between y ( t )  and q*(t‘). 

The degree of reversibility in the evolution of the wavefunction in a one-dimensional 
system is determined by the overlap between q ( t )  and q*(t’) which depends on the 
relative phases of the components of the wavefunction in different quantum states. If all 
the components are in phase the magnitude of the overlap is equal to 1 but it reduces as 
the phase differences increase. It is easiest to determine the overlap between y ( t )  and 
y*(t’)  for the first example presented in the previous section because the phase factors 
in (4) are negligible for t * 2h(n2 + n)n2/mu2 and as the matrix elements M ( n )  are real 
the relative phases of the components of the wavefunction in different quantum states 
are determined solely by the coefficients, c,. From (9) it can be seen that the unbounded 
contributions to the coefficients are all real, so these components of the wavefunction 
are in phase. These contributions to the coefficients will vanish when the width of the 
well has been reduced to its initial value and only the imaginary parts of the coefficients 
will be non-zero. The degree of irreversibility in the evolution of the wavefunction is 
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determined by the imaginary parts of the coefficients at time 2t' ,  which will be twice as 
large as their values at time t'. It can be concluded that the largest contribution to the 
non-adiabaticity in the evolution of the wavefunction is reversible and it does not 
prevent the wavefunction from returning to the lowest eigenstate of the instantaneous 
Hamiltonian when the width of the well has been reduced back to its initial value. 
Combining (14) with the phase factor in (10) for the case of the potential well whose 
width increases quadratically with time shows that the unbounded components of the 
wavefunction are all in phase so the conclusion about the degree of reversibility in the 
evolution of the wavefunction applies equally to this example. These results suggest 
that the conductance of a device that contains several constrictions will be accurately 
quantised because the evolution of the transverse wavefunctions is almost reversible. 

The evolution of the transverse wavefunctions in the two-dimensional systems stud- 
ied experimentally is less reversible than in the one-dimensional system investigated in 
this paper. Consider a device that contains two constrictions of equal width. If only 
electrons in the lowest transverse quantum state can pass through the constrictions the 
time-reversed solution to the Schrodinger equation for an electron in the region between 
the constrictions describes a wave packet that propagates to the lowest transverse 
quantum state in the first constriction. If the system has reflection symmetry in a 
line normal to and bisecting the line joining the two constrictions the time-reversed 
wavefunction can be reflected in this line to produce a wave packet that propagates to 
the lowest transverse quantum state in the second constriction. Hence, the amplitude of 
the wavefunction that propagates through the second constriction is determined by the 
overlap between q and the reflection of q* in the line normal to and bisecting the line 
connecting the two constrictions. The degree of reversibility in the evolution of the 
wavefunction is now determined by the relative phases of the components of the 
wavefunction in different transverse quantum states and the spatial separation between 
the components, which arises because the components of the wavefunction in different 
transverse quantum states have different group velocities. After a time tC given by 

tc = v t / A v  (14) 
where U is the average group velocity of the components of the wavefunction, t is the 
coherence time of the initial wave packet and A V  is the smallest difference between the 
group velocities of any two components of the wavefunction, the electronic wavefunction 
will have separated into a set of discrete wave packets each wave packet containing the 
components of the wavefunction in a particular transverse quantum state. After this 
time the scattering between the quantum states that occurs when the channel narrows 
towards the second constriction cannot cancel the scattering that occurred when the 
width of the channel increased after the first constriction because of the spatial separation 
between the components of the wavefunction. The amplitude of the wavefunction that 
propagates through the second constriction will then be determined by the degree of 
adiabaticity in the evolution of the wavefunction rather than the degree of reversibility 
and the conductance will be smaller than its quantised value. The conductance will 
decrease continuously between its quantised value and this smaller value for times 
0 < t < tc but will remain at the smaller value for times greater than tc. 

4. Summary 

It has been shown that the evolution of an electronic wavefunction in a potential well 
whose width increases with time becomes strongly non-adiabatic no matter how small 



4946 M C Payne 

the rate of change in the width of the well. This invalidates the assumption of adiabatic 
evolution of the transverse wavefunctions which is often applied to quantum transport 
devices. The quantisation of the conductance in a device that contains a number of 
constrictions requires reversibility in the the evolution of the transverse electronic 
wavefunction rather than adiabaticity and it has been shown this condition is not strongly 
violated. 
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